Experimental quantum computing without entanglement.

نویسندگان

  • B P Lanyon
  • M Barbieri
  • M P Almeida
  • A G White
چکیده

Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

درهم‌تنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهم‌کنش ژیالوسینکی - موریا

  Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...

متن کامل

Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy

The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...

متن کامل

Coherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System

The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...

متن کامل

Photonic entanglement as a resource in quantum computation and quantum communication

Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entang...

متن کامل

Quantum advantage without entanglement

We study the advantage of pure-state quantum computation without entanglement over classical computation. For the Deutsch-Jozsa algorithm we present the maximal subproblem that can be solved without entanglement, and show that the algorithm still has an advantage over the classical ones. We further show that this subproblem is of greater significance, by proving that it contains all the Boolean...

متن کامل

Entanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence

The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 101 20  شماره 

صفحات  -

تاریخ انتشار 2008